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Abstract

In this paper we consider a generalization of different variants of Durrmeyer-type
modifications of Meyer—Ko6nig and Zeller operators. Eigenfunctions in terms of linear
combinations of the functions f,,(x) = (1 — x)™" are computed explicitly. From this we also
derive a quite simple representation in terms of the functions 4,,(x) = x"/(1 — x)™.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Positive linear operators; Durrmeyer-type operators; Eigenfunctions

1. Introduction and definitions of the MKZD-type operators

Durrmeyer-type modifications M,, neN, of positive linear operators were first
introduced for the classical Bernstein operators by Durrmeyer [4]. Their eigenfunc-
tions which turned out to be independent of n were given by Derriennic [3].

There are several definitions for Durrmeyer-type modifications of the Meyer—
Konig and Zeller operators in Refs. [1,2,6] which can be regarded as special cases of
our general definition.

In what follows, the operators are always defined for functions f, such that
the series on the right-hand side is convergent. This is the case e.g. for f'e L]0, 1]
but also for i.e. the nonintegrable functions f,(x) = (I — x)", meN, m sufficiently
small.
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For xe R, /e Ny, we will use the notation of rising and falling factorials, i.e.
-1 I-1

Hx+v H(x—v) for leN, x" =x2=1.

v=0 v=0

Definition 1. For fixed veZ, keR, let ne N, such that n + veN. Then we define

0 1
(Myf)(x) = mw@ﬂ%+ﬂ/'mﬂmdﬂﬂ—07ﬂ0w
k=0k>K—1 0

where

(k+ 1) Xk(l _x>n+1

My i (x) = , x€l0,1].

Remark 2. The above definition gives a unified approach to the different definitions
of Durrmeyer-type modifications of the Meyer—Ko6nig and Zeller operators. To be
more precise we note that M!0 corresponds to the definition given by Abel and
Gupta [1], M>° to the definition by Chen [2] and M?? to the definition by Guo [6].
The generalization was already given in [9] for the case ve Ny, x = 0, which did not
include the definition given by Guo.

By using the same transform as in [10] for the Baskakov and Meyer—K6nig and
Zeller operators, i.e. o(x) = X5, f(t) = g(a(1)), we derive

(M,"f)(x) = (B,19)(0(x)), (1)

where the general Durrmeyer-type modifications of the Baskakov operator are
given by

o0

BEDNE) = 3 buixx)(n ) /0 T bk (OF (1) di,

k=0k>Kr—1

n+1)" n
mHM@:(’ﬂ)ﬁu+x)““ﬂ xel0, o).

For v = 0 this is the Baskakov—Durrmeyer operator considered in several papers by
the author (see e.g. [7,8]). This connection between the operators will be used at the
end of the paper for the special case v =x = 0.

In view of (1) M?? seems to be the most natural case but up to the authors
knowledge this has not been yet considered.

Throughout this paper we will use the following identities which can be easily
verified:

zf’?: My (x) = 1, (2)
k=0
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1
/0 M ()(1 — 1) dt = I (3)

n

2. Eigenfunctions of the operators

In order to derive eigenfunctions of the operators M, ™ we have to find functions
for which the image under the operators can be evaluated explicitly and for which
the image is of the same type of function.

In case of k<1 this leads us to the functions f,,(¢) = (1 —#)™™, meN,. For k>1
this is not a suitable choice as it turns out that in this case the image of f;,, is not of
the same type (see Remark 4). Furthermore, it is easy to see that in case ke N the
monomial e.(f) = is an eigenfunction of M}* (see [6, p. 13] for k=2).
Unfortunately, this is the only one which we are able to determine up to now in
this case.

Lemma 3. Let k<1, f,,(1) = (1 —¢)™™, meNq with m<n+v — 1. Then we have

(M fi)(x) = (n+v—1 an( >n+] V_K_m)mﬁ(x)

Sfor x€[0,1).

Proof. With the definition of m,.,x—.(?) and (3) we get

1
(n + V)/() miz-&-»gk—,c(l)(l — 1‘)_2(1 _ t)—m dt

=y 00— 0
C(nv+k—Kk)*
(n+v—1)"
Thus we have
(M fon) (x)
(n—l—v—lmn'z X"+ D+ v+ k — )2 (4)

We now determine coefficients C,,; such that

m

(k+1)'(n+v+hk—r)"=>" Culk+1 )
J=0
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which is equivalent to

Cnj(n+k+ 1)7.

-

Il
o

(n+v+k—x)*=
J

This can be done by determining the Newton-polynomial of
p(x) = (x+v—x)*
for the knots x, = —(1+1/),[=0,1, ...,m, i.e.

= Cujlx+1Y
j=0

and evaluate this for x = n + k.
The corresponding divided differences are

m _—
Cnj= (j )(V—K—m)””, j=0,..,m.

Putting this into formula (4) we get after interchanging the order of summation
which is allowed as the series is absolutely convergent for xe[0, 1)

(M} fn) (X)
(n+v—1 (n+v—1)Zn! > ( > n+Py = —m "f, Z’”Hﬂk

j=0
(n+v m Z ( ) n+] (V_K_m)ﬁﬁ(x)’ (5)

where we used (2) in the last step. [

Remark 4. We point out that in case m>=v — k>0, —xeNy, the rising factorials

(v—x —m)mfj are equal zero for j=0,...,v—x — 1. Thus for m>v — x>0 the
result of Lemma 3 can also be rewritten into

(M;?Kﬁn)( x) = (n+v ”771' Z < >n+] (V_K_m)rnijf./i(x)'

J=v—K

In case of k=1 we get with the same calculations as above

(MZ’Kfm)(X)
(n +v—1)2n! Z( > n+ v —rx— m)m__jf/(x) k:();’c_l My i (X)

instead of (5), from which it is clear that the choice f,, is not suitable for our
considerations in this case.

With the result of Lemma 3 we are now able to prove the following statements
about eigenfunctions and corresponding eigenvalues in case k<1.
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Theorem 5. Let k<1, meNy with m<n+v — 1.

(1) For m=v or m<*5! the operator M)* has an eigenfunction of the form

Z S (6)

with corresponding eigenvalue
. (l’l + m)m
N e )

(2) Except of a constant factor the coefficients of (6) can be uniquely determined by

it =y (Y )

Tl w/) (2m—v)™=E

(3) For 3<m<v —1 there exists no linear combination of the functions f,, p=
0, ...,m, which is an eigenfunction of the operator M.

Proof. First, we investigate the equation

[M‘K<Z amu >‘| 7):;m Zam,/ (8)

With the result of Lemma 3 we get after interchanging the order of summation that
(8) 1s equivalent to

m m u—j
(V — K — 'u)ﬂ v K
S ()i = 2 3 i ©
u=j
Without loss of generality, we can assume a,, #0. Otherwise we could have
considered m — 1 instead of m. So in what follows we set @, = 1.
Comparing the coefficients of f,, leads to

P (n+m)™
‘nm (I’Z Fv— 1))1_1

Putting this in Eq (9) multiplied by n!(n +v — 1)* and comparing the coefficients
of fj, j=0,...,m—1, leads to the following linear system of equations for
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the /™, j=0,...,m—1.

m/{(n+m)'*(n+]) (l/l+vf - )m j}
m—1 m -
_(n+j)!lt;l<j)(n+v— —1> (V—K—ﬂ)”_"a;;;fﬂ
v +j)!<j )(V_"_’")n”' (10)

Since the coefficient matrix is triangular its determinant is given by the product of the
diagonal entries, i.c.

m—1
H{ ntm)l = (n+v—j— 1" (n+))}
. m—1

=TT+ {0+ my = (v —j = 12},

J=0

As m<n—+ v by the assumption of the theorem we have in case m>v that n+; +
I>n4+v—-—m>0n+j+2>n+v—m+1>0,....n+m>n+v—j—1>0 which
gives that the value of the determinant is different from zero. So system (10) has a
unique solution which proves that there exists an eigenfunction of the desired form
(6) with coefﬁ01ents a,;", which are unique except of a constant factor.

For m<'5- it follows that O<n+j+1<n+v—-m, O0<n+j+2<n+v-m+

., 0<n +m<n +v—j—1 which means that the value of the determinant is

different from zero also in this case. So we also have eigenfunctions of the form (6)
with coefficients a, which are unique except of a constant factor in this case.

We now prove that for m>=v or m<*3! the coefficients a;*, in (7) satisfy (8) or
equivalently that

#Zm;(n+v o 1)@(?)(\;— K_N)E(_l)m_ﬂ<z>(ngzx—;;,2i_ﬂ

—M_ m—j m M
7(n+j)!( D <]> I,

m u

holds true for every j =0, ...,m.

Multiplying by (—1)'”_’ oL % and using the identities

wi i(m 4 Kk —v)=r
(D" (v—x—p) mzl
(2m — v)2L

(2m — v)™=£

)

:(m—er,u)ﬂ,
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we get that (11) is equivalent to

(v —p— )" m vt (ntm
%; (m = p)! (n—J)! _(m—j>' (12)

Shifting the index of summation g = u —j we get that the left-hand side of (12)
equals

m*j

n+v— —j—1)=
rr (m—j—p)! it!

=

By Gould [5, (3.2)] this is equal to (Zj’”) So we have proved (11) and (8),

respectively.

Together with our considerations above we have proved the first and second
statement of our theorem.

In order to prove the third proposition we look at the case s<m<v — 1.

We consider again system (10) of linear equations for the coefficients a)"; ; butonly
for j = v —m, ...,m. By the same arguments as above we get that
a = (_l)m—j (m)(m + K — v)m J
" J (2m —v)"=
j=v—m,...,mis the unique solution except of a constant factor.
We now look at the equation for j* =v —m — 1. Putting in the values for a," ,
p=v—m,..,mand 2, we get
ap{(n+m)! = (n+4 ) (n+v —j = 1)L}
— (i)Y (v —p— 1)’M<‘_ﬁ>
u=j*+1 J
T M\ (m+x—v)"E
x (v—x— 7 (=1)"* ——— 13
TR EIC el (i R (13)

Obviously, the value of the curly bracket on the left-hand side is equal to zero for
JF=v—m-—1.

As
(V - 'u)“*"*m*l(_l)m*ll(m 4K — V)ﬂ — (m _ K)Zmﬂurl7
we get for the right-hand side of (13)
mn 2m—v+1
n m (m _ K)—
n+v—u— ) ——m—
H‘Zm<v—m—l>(,u>( s ) (2m—V)7H

As every factor in this sum is positive it is different from zero. So Eq. (13) has no
solution and we have proved the third proposition of our theorem. [



70 M. Heilmann | Journal of Approximation Theory 125 (2003) 63-73

Remark 6. We want to remark that the eigenfunctions in Theorem 5 are independent
of n. Furthermore, the corresponding eigenvalues do not depend on the parameter
k<l1.

Evidently, the third proposition of Theorem 5 is only relevant in case v=2, as the
inequality 3<m<v — 1 has no solution me N if v<1.

We also point out that for m>v — k>0, —xeN,, the falling factorials (m+

—v)™=E are equal to zero for u=0,1,...,v—k — 1 and thus the corresponding

coefficients a;;,. So the eigenfunctions reduce to

m
VK V,K
gm - E : fH
H=v—K

in this case.

Example 7. We list some examples of eigenfunctions:

= fo,
v<lorv=3:g/" =/ — %fo,
r<orvasipt =2 R e
For v — x>0, —xeN; we have
9.5 =Fors
9t =fo — %J‘
9uowiz =foonr2 = 2K 124 Frori <(V__2§ j: ;;8 - gl:le) S

In our next lemma we show an equivalent representation of the eigenfunctions of

Theorem 5 in terms of the functions ;(x) = (= Y) j€Np, which turns out to be
quite simple.

Lemma 8. Let hj(x) = ( ) je€Ng. Then the functions g* of Theorem S can be
rewritten into

" m\ (m— k)"
VK E N
Im < ' )(Zm — )y

=0 N

Proof. We start with the representation of the functions g;;* given in Theorem 5.
Putting in f, = Z;‘:O(’;)hj and interchanging the order of summation leads to

m m
V,K V,K 'u
i = w> an (). (14
e J
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Putting in the formulas for the coefficients a,;", and using the identities

(=D)" " m+rk—v) "t =(v-—rx—p—1)"~

and

1 (m—v+

(2]’}’1 — V)M o (2m — v)ﬂ ’

we get for the inner sum of (14)

Z’" e
a:r";:ﬂ ( i >
H=j J

o v e 1
C12m =) Z (u—j) (m—p)! ' (15)

=j

Shifting the indices g = p —j and using [5, (3.2)] we derive that (15) equals

v+ D (k=1 — )
2m—v =0 ! (m—j— Q)

Inserting this into (14) proves the proposition. [

M\

In the following, we consider only the special case v=x =0 and use the
connection to the Baskakov—Durrmeyer operators. In [8, Lemma 3.1] we have
proved the following result.

Lemma 9. Let ¢(x) = +/x(1 +x) and f, ¢*"f"™ m-times differentiable on the

interval [0, 00). Then we have

dm

dxm

{p(x)" (BYS ()™ (x)} = {BY (0(0)™" 1™ (£) ™} (x). (16)

For the monomials it is proved in [8, Satz 4.1]:

Lemma 10. Let e,(1) = ™, meNy. Then

wﬁlxw=@:ﬂlﬁfm<{7)m+mﬂ.

(n—1)! =3 J! n!
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So putting f(¢) = -} e,(7) in Eq. (16) we derive

(B o) ") = D ),

From this we get the following result for the eigenfunctions of the Durrmeyer
modifications of the Baskakov and the Meyer—-Ko6nig and Zeller operators
respectively in terms of a Rodriguez-type formula.

Theorem 11. The functions
m

g~n1(a) = d—m (0-(1 + G))m

are eigenfunctions of the Baskakov—Durrmeyer operators B H with eigenvalues

0 (n+m)™*

N

With ¢(x) = 1% we also have
~ m X
o (x) = Gm(a(x)) = D" | ———
(1—x)
are eigenfunctions of the operator M where the differential operator D" is defined by
g f/ X i 11—

0 =L (07 = 001 )

The representation of eigenfunctions in terms of Rodriguez-type formulas for the
general case will be considered in a forthcoming paper.
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